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Concument Network Diakoptics for

Electromagnetic Field Problems
L. N. Merugu and Vincent F. Fusco

Abstract— This paper presents a new’ modification to circuit

based diakoptics equations which allows the efficient manipu-
lation of equivalent circuit models which represent Maxwell’s

equations. A new formulation of the diakoptics equations is given

whereby torn stibnetworks used to form the problem domain
under consideration can be connected on a nearest neighbour

basis. This formulation allows an algorithm to be written which

is suitable for implementation on a parallel computer. In this

work implementation is on a transputer array configured with
two different topologies. The computational efficiency of each

topology is appraised and considerable computational advantage
demonstrated with respect to the classical sequential varient of
the technique.

The procedure is then applied to sample electromagnetic field
problems in order to verify its utility. Finally it is used to compute

the performance of a patch microstrip hybrid coupler.

I. INTRODUCTION

T HE USE OF lumped electrical network equivalents to

represent electromagnetic field quantities in the frequency

domain is well-known [1]–[3]. However computation is noto-

riously slow or indeed impossible due to the large networks

involved. This is true when conventional circuit analysis

programs such as SPICE are used for solution. To overcome

the computational difficulties encountered with large networks,

concurrent diakoptics is developed here such that a large

network can be solved piecewise [4].

The classical diakoptics method was developed by Kron [5],

[6] to solve large physical problems by tearing the network

into smaller pieces. In the past decade two major areas of

application of diakoptics have emerged, one is field based, [7].

[8] for the field analysis of antennas, and [9]-[11] for the field

analysis of MMIC structures. The application of diakoptics

(for EM field problems) using network models has received

little attention [12], [13]. This paper considers a revision of

the use of Kron’s diakoptic method formulated by Brameller

[14] to solve the network models of Maxwell’s equations using

novel concurrent programming techniques.

Simulation of electromagnetic behaviour of field problems

at microwave and millimeter wave frequencies becomes com-

putationally intensive for problems with complex geometry

and generally requires high speed, large capacity computers.

A parallel computer consisting of several processing units
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offers high speed and allows large problems to be solved by

partitioning [15].

The motivation for the computational strategy adopted

in this work is the availability of the INMOS transputer

[16], a microprocessor exclusively designed to support

concurrent parallel programming applications. The transputer

has four bidirectional links used to communicate with other

processors, thereby allowing various processor topologies to

be constructed in order to form a general pupose low-cost

parallel computer.

Application of parallel computing methods to electro-

magnetic problems is fairly recent [17]. Most reported

applications have focused on the prediction of RF scattering,

and calculations are normally pursued on expensive massively

parallel computers [ 18]–[2 1]. As an alternative the transputer

strategy used in this work to support a concurrent diakoptics

algorithm offers a modular approach to the construction of a

Multiple Instruction Multiple Date MIMD computer used as

an adjunct to a personal computer [21 ]–[23]. Parallelism in the

diakoptic methods comes from the property that the solution of

one subnetwork does not depend on the solution of any other

subnetwork, networks can therefore be solved simultaneously

(concurrently).

In this work two different concurrent diakoptic equivalent

circuit network algorithms are formulated and verified by

modelling the field distribution of a rectangular waveguide,

a microstrip line and a microstrip patch coupler. The re-

sults obtained show agreement with theory and validate the

performance of the algorithms developed.

II. ELECTROMAGNETIC FIELD NETWORK ANALOGY

Ivlaxwell’s equations for an isotropic source free medium are

vxH=(o+juc)E

VxE=–jwpH (1)

If the field is constant in one of the coordinates say y, so that

i7/3g = O, the zbove set of field equations divide into two

independent sets. The first set consists of Transverse Electric

(TE) waves i.e., field components Ev, Hz and Hz. These can

be expressed in finite-difference form as
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‘.(X’+$)-H+-$)
-H(X+%+H(X+)

= (a +ju)AIEv(z, z) (2)

where fl 1 = flx = AZ. These equations can be used directly

to solve field problems or can be abstracted into an electrical

equivalent circuit form, [2], [27].

The finite-difference equations (2) can be represented by

the RLC circuit shown in Fig. 1, Kirchhoff’s loop equa-

tions are satisfied around meshes ABGA and ADGA, while

KirchhofPs current law is obeyed at the junction A. The

voltage across the shunt capacitors correspond to Ev field

and current through the series inductors correspond to Hz and

Hz field [2]. Conducting boundaries can be applied by short

circuiting the shunt capacitors. If a conducting boundary has

a known nonzero conductivity or radiates this can be taken

into account by terminating the network in an appropriate

impedance [28]. In the work presented here radiation effects

are not included, and unless otherwise stated all boundaries are

assumed ideal. Boundary excitation is applied by connecting

voltage or current generators to the boundary nodes of the

network, the amplitude andlor phase of these is defined by the

particular problem under investigation.

The model cell given in Fig. 1 is duplicated inorder tc) fill

the space occupied by the real problem, thereby forming a

highly regular grid of network elements. Thus implying im-

plementation of the network solution using parallel computing

techniques based on concurrent diakoptics algorithms.

III. CIRCUIT BASED DIAKOPTICS

In order to solve a large system in a piecewise manner the

system itself, or an abstract version of it, its branch network

model, is dissected into n parts. After solving each part

separately, the n pieces are reconnected to form the solution

of the original problem. As a result the final reassembled

piecewise solution is the same as that for the same network

analyzed, in totality.

There are several advantages to piecewise solution of a

physical system in comparison to the conventional methc~d of

solving an entire problem as one unit.

1. Large problems that could not be solved before due

to limited computing capacity can now be solved by the

diakoptics method.

2. The accuracy of the solution depends on the size of the

subdivisions and not on the size of the original network.

3. Considerable savings in computation time can be

achieved. For instance inversion of a matrix by diakoptics

results in a CPU reduction of 2/n2, where n is the number

of subdivisions.
4. If two or more subnetworks are the same, then only one

subnetwork need be solved.

5. If a system is modified then only the subnetworks of the

modified portion need to be solved again since the rest of the

solution remains unchanged, so that solutions evolve with the

physical system.

$’ /$-’
Hz

z

Fig. 1. 2-D Network analog for TE waves in Cartesian coordinates.

Fig. 2. Illustration of 64 node network torn mto 4 Subnetworks.

6. A library of subsolutions can be maintained so that they

can be interconnected as and when required.

7. Each subnetwork can be manipulated independently of

every other. This allows scope for efficient parallelization of

the solution which has ramifications for the solution in terms

of 1–6 above.

The fundamental equations of diakoptics using nodal anal-

ysis terminology are discussed fully in [14] where a general

exposition including sources in the removed branches (useful

for solid state modelling) is given. The method proceeds by

tearing the composite network in Fig. 2 into a number of

subnetworks (equivalent networks) each with an admittance

matrix Yjj.

The admittance matrix (~] of the composite network has a
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block diagonal form,

[

i~~ o . . . . . . 0

Y.a =
o Y22 o .-. 0

1

(3). . . . . . . . . . . . . . .

0 0 0 . . . Ynn

The block diagonal form of (3) is an essential element of this

method since inversion of the matrix is obtained by inverting

each of the individual submatrices along the diagonal.

The resulting diakoptic equations can be written as

V. = ?a;lIa – Ya;l Cm&’;@: Ya;lIa (4)

where

.& = Z+* + C$.Y.L1 co!+

which is used to solve for the network unknown nodal volt-

ages, Va with lG as the excitation current vector. In (4) Z++ is

the removed element matrix, and C&a is the connection matrix

used to interconnect the subnetworks. These definitions and

their derivations are fully discussed in [14] to which the reader

can refer for more detail. Equation (4) and special concurrent

derivatives of it are used as the basis for the work described in

this paper. Concurrent algorithms will be developed to solve

the equations represented by (4). Due to its block diagonal

form (4) takes full advantage of ne:work tearing by inverting

the equivalent admittance matrix [Y] piecewise.

IV. PARALLEL ALGORITHM DESIGN

Many physical problems have a geometrical structure with

spatially limited interaction between non-adjacent discretized

cells. The problem geometry can therefore be divided into a

number of parts and each part can be assigned to a different

processor, the processors communicating with their nearest

neighbors. It is always preferable to implement the hardware

configuration in such a way that the processor array has the

same geometry as that of the system being simulated [29].

This is the basic technique adopted in this work and is sup-

plemented by algorithmic parallelism. Algorithmic parallelism

is achieved by identifying parts of the algorithm supporting

concurrent operation, each part may then be executed on a

different processor to obtain speed-up. For convenience all

of the algorithms used in this work are programmed in 3L

PARALLEL FORTRAN [30] which is a concurrent varient of

ANSI FORTRAN 77.

V. DIAKOPTIC ALGORITHM FOR NETWORK SOLUTIONS

In this section diakoptic algorithms are developed to con-

struct a fast electromagnetic field computing technique. The

network based diakoptic algorithms developed here are used

to model the two-dimensional field network analogs described

previously.

Fig. 2 represents a medium that can be used to model

Maxwell’s equations in 2-dimensional space. The size of

such a network for a given application depends on the field

resolution required and in general this results in a large

network, solution of which by direct network solution methods

may be very inefficient thus often computadonally infeasible.

The method presented in this work is essentially a two

TABLE I
COMPUTATIONTIME FOR DIFFERENT SIZE USING SEQUENTIAL ALGORITHM

Size of
Nehvork
(NO&s)

88

132

176

264

352

440

528

616

704

CommutationTime (Seconds)

1 x T800
(’H)

4.67

6.82

10.93

27.07

58.00

108.42

183.34

287.31

425.50

.,
PC3861387

m)

11.53

19.95

36.10

101.48

227.75

435.00

743.24

1172.47

1741.76

Time Ratio

T2/Tl

2.47

2.92

3.30

3.75

3.93

4.01

4.05

4.08

4.09

dimensional lumped circuit representation of the classical

finite difference form of Maxwell’s equations. This method

of representation has several advantages when compared with

finite difference or finite element electromagnetic field formu-

lations. The primary advantage is that the repetitive networks

describing the electromagnetic field connect on a nearest

neighbor basis, this implies natural concurrency therefore

the potential for highly efficient parallel algorithms. Natural

concurrency is difficult to find in finite difference of finite

element formulations other than at the equation assembly

phase, although special concurrent matrix solvers [35] could be

brought to bear latter in the solution cycle. The accuracy of the

network modelling approach is restricted only by the normal

requirements of lumped element descriptions of distributed

circuits and does not suffer from numerical convergence

difficulties associated with other methods. In addition the

network modelling method is very suited for direct integration

with active device lumped equivalent circuit models, this is

not generally the case with alternate field based approaches.

This aspect of the modelling strategy adopted in this work is

currently this subject of a separate study.

The diakoptics method implemented in the following sec-

tions allows the solution of large systems in a computationally

feasible way. The results in Table I are for classical implemen-

tation of the diakoptics algorithm. This computes subnetworks

serially and interconnects the subsolutions on a global basis to

form the solution for the original problem, (4).
Matrix products C.@ V@,C$aVa and C&ya>l c~@ in (4)

can be reduced to algebraic summations which contribute

significant savings in computation time irrespective of whether

the algorithm is serial or parallel. This is achieved by storing

the connection matrix in condensed form [14]. Throughout

this work the connection matrix is used in its condensed form,

this results in computer time savings of about 40% for typical

problems [4].

Computation times obtained on a single transputer and those

for a PC with coprocessor for the sequential algorithm for

network sizes ranging from 88 nodes to 704 nodes is given

in Table I, in each case the network is subdivided into four

subnetworks.
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VI. CONCURRENT DIAKOPTIC ALGORITHMS

Further improvements in the performance of the diakoptics

algorithms are now investigated by applying parallel comput-

ing techniques. The interconnection of subnetworks on a gl[obal

basis requires the matrix 200 in (4) which in turn depends on

the solutions of all subnetworks. If the subnetwork solutions

are communicated to a master process, the communication

time may outweigh the advantage obtained by solving the sub-

networks in parallel. Since the interconnection of subnetworks

cannot start t.tntil all the solutions of the subnetworks are avail-

able, the processors solving the subnetworks become idle as

soon as they transfer the solution to the master, thereby leading

to inefficient utilization. This problem can be circumvented by

introducing a nearest neighbor interconnection methodology.

A. Nearest Neighbor Subnetwork Interconnection

The nearest neighbor reformulation of (4) for a simple two

subnetwork arrangement is given by (5), (6).

where

here, 1, 2 refer to the independent subnetworks

11

01(5)

(6)

1 and 2
and 2 refers to the matrix formed via connection branch

elements. Cl ,Z are the connection matrices describing the

interconnection of branch elements to subnetworks 1 and 2
respectively. The process of forming larger subnetworks from

smaller subnetworks will be called folding.

B. Network Folding Algorithms

In general diakoptics formulation, the connection of one pair

of sttbnetworks does not depend on that of any other pair. thus

a number of interconnection processes can be implemented

in parallel. For instance the subnetworks (1, 2) and (3, 4)

shown in Fig. 3 can be connected simultaneously on the nearest

neighbor basis. The operation of this algorithm is similar to

paper folding with each incremental circuit element forming a

hinged square, thus the term ORIGAMI algorithm is proposed

[24]-[26].

In the ORIGAMI algorithm each of the processes numbered

1 to 4 in Fig. 3 computes concurrently the nodal admittance

matrix of a piece of the network. Interconnection of the

subnetworks can then be carried out concurrently on the

nearest neighbor basis. For example in Fig. 3, the network

can be folded in two stages, in the first stage subnetworks SN1

and SN2 can be folded to form a larger subnetwork denoted by

SN(l, 2). The order of this resultant subnetwork is the sum of

the orders of the subnetworks SN 1 and SN2. Simultaneously,

folding of another pair of subnetworks SN3 and SN4 can be

performed to form another larger subnetwork SN(3, 4).

IM
SN1 SN3

aN2 st’44

+

SN(3,4)

(a)

....WW??W.J! W.................................

M
Task 3
(SN3)

: H

ElTaak 4
(SN4)

........... .

(b)

Fig. 3. Network folding ORIGAMI algorithm and task distribution.

In the second stage the compound subhetworks SN(l, 2)

and SN(3, 4) can be joined to form the solution of the network

using (5) and (6). In general for a network divided into 2’”

subnetworks the nearest neighbor joining method requires m

stages of folding in order to arrive at the final solution. The

next (m – 1) stages fold the smaller subnetworks to form larger

subnetworks by the following equations

‘=[y~’iil[alz-’
“[c:c~+’’[y~’ii] ‘7)

where

2 = z + C;P.C. + C;+lYJIC.+l

n and n + 1 in the above eqttations refer to the adjacent

subnetworks n and n + 1. C. and Cn+l are the partitioned

connection matrices local to the subnetworks. The computation
times obtained for the algorithm of Fig. 3 are given in Table II.

From Table II the improvement in speed-up on a 4 transputer

network is not significant when compared to that on a 2

transputer network. The reason is due to the local interconnec-

tion process explained in Fig. 3(a). Here when one processor

communicates its solution to the adjacent processor it will be
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TABLE 11
COMPUTATIONTIMES ON NETWORK FOLDING ORIGAMI ALGORITHM

w
132 I 8.41 I 4.28

176 I 16.75 I 8.52

264 I 47.24 I 23.95

352 I 102,CO I 51.60

4 x T800
@3)

1.53

3.46

6.60

17.58

36.80

Spd-up

T

1.96 I 2.43

1.96 I 2.53

1.97 I 2.68

1.97 I 2.77

440 I 188.34 / 94.97 / 66.35 I 1.98 I 2.83

528 I 312.91 I I 107.93 1“1 2.90

idle for the rest of the problem. For instance in the algorithm

of Fig. 3(b) the transputer executing task 2, computes the

subnetwork solution and communicates it to the processor

executing task 1 and will be idle for the rest of the problem. If

the algorithm is executed on 4 processors, after the first stage

of interconnection 2 processors executing task 2 and task 4

will be idle. The main process is placed on the root processor

executing task 1,

In general if the algorithm has 2m tasks and each task solves

asubnetwork onan independent processor. then half thenum-

ber of processors will become inactive after connecting of each

stage until (m – 1) stages of interconnections. The processor

utilization maybe improved by placing more than one task on

a processor. However the accumulation of subnetworks leads

to memory storage limitations on individual processors. As a

result of this the ORIGAMI algorithm is effective only for

small to medium sized problems, cf. Table I.

The limitations of the ORIGAMI algorithm explained above

may be overcome by updating the subnetwork solutions lo-

cally. The RING algorithm is designed for problems which

can be partitioned such that each subnetwork communicates

with its successor and predecessor, hence the subnetworks

form a chain (or a ring) of processes shown in Fig. 4(a).

Large problems can be handled by folding the processes locally

(Fig. 4(b)). Hence a network representing a tield problem with

complex geometry can be efficiently modelled by partitioning

the geometry into four major subnetworks which communicate

with each other in a pipe or ring structure, Fig. 4(c).

The Appendix describes a mathematical formulation to fold

a four subnetwork problem which can be mapped onto a ring

of transputers. In the ring algorithm a subnetwork does not

send its full solution say, (mxm matrix to its neighbor, instead

it now sends only a ($x$) matrix in which ~ is the number

of removed branches local to the two adjacent subnetworks.

Since there is no subnetwork accumulation as there is in the

ORIGAMI algorithm, much larger problems can be efficiently

solved.

The RING algorithm shown in Fig. 4(a) was mapped onto

a two and a four transputer network. The computation times

for three sizes of networks obtained on a 1, 2 and 4xT800

transputers are given in Table III. It can be seen from Table III

that the RING algorithm is more efficient than the ORIGAMI

algorithm.

SNl

El
1

2

SN2

E
3

4

I

(a)

+

-

(b)

SN3

E

5

6

SN4

El
7

8

Trausputer network

(IBM-PC)
Host

- ~ —
Task1 — Task2

— —

I I I I

Fig. 4. Network folding RING algorithm and task distnbutlon, (a) Simple
process parutiomng. (b) Composite process parmtionmg. (c) Mapping of
processes onto a rmg of transputers.

TABLE III
COMPUTATIONTIMES ON NETWORK FOLDING RING ALGORITHM

132 I 5.00 I 2.81 I 1.82 I 1.78 I 2.75

176 I io.77 I 5.66 I 3.62 I 1.90 I 2.97

264 I 34.00 I 17.47 I 10.98 I 1.94 I 3.09

352 78.76 40.15

440 151.92 77.28

25.10 1.96 3.14

48.11 1.96 3.16

528 / 260.73 I
132”32 I 82”33 I 1“97 I 3“16

616 412.10 208.83 129.90 1.97 3.17

704 606.00 304.62 190,81 1.99 3.17

VII. PERFORMANCE OF THE DIAKOPTIC ALGORITHM

The computational performance of the network folding

algorithms are compared by contrasting Tables I, II, III.

Computation is enhanced by about 3.17 times over that on a

single transputer i.e., 2.2 times over the sequential algorithm.

The ORIGAMI algorithm could not be used to solve the 704

node network because of memory limitations associated with

the transputer. When the size of the network is doubled from

352 nodes to 704 nodes, the computation time increased by

a factor of 7 to 8 times for all cases, primarily due to the

solution of subnetwork elements.
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TABLE IV
COMPUTATIONTIMES ON NETWORK FOLDING RING ALGORITHM

USING ORIGAMI METHOD FOR SUBNETWORKFOLDING

4 54.65 27.79 17.46 1.97 3.13

704 4 2 196.25 99. i9 61.91 1.98 3.17

4 105.13 53.17 33.34 1.98 3.15.

NWS -Nehvork Sire
MSN - Major Subnehvorks
SSN - Smstler Subnetworks

In the network tearing approach there is no fixed limit to

the size of the subnetwork, and to the number of pieces;

however, it is usual to define a primitive element as that

having the smallest size that can be conveniently replicated.

The size of a subnetwork influences overall computation

time for the solution of a large network. A considerable

computational advantage using the RING algorithm is obtained

by dividing each subnetwork of a large network further into

small subnetworks as shown in Table IV. This time the 704

node problem reduces to 196.25 and 105.13 seconds, Table

IV when each subnetwork is further split into 2 and 4 small

subnetworks. It should be noted that speed-up for the networks

sizes given in Table IV is nearly the same as that given in

Table III, but the overall computation time is considerably

reduced, an overall speed-up of 10 to 18 times is obti~ined.

As discussed above the RING algorithm is most effective

when large networks are considered. This can be seen in Table

III where minimum processor times occur for the 132 node

problem. For smaller network sizes processor latency reduces

computational advantage.

VIII. VERIFICATION OF THE NETWORK DIAKOPTICS METHOD

The concurrent diakoptics method is now applied to a wave-

guide problem. To satisfy the required boundary conditions

the side walls of the waveguide are connected to ground,

input excitation is applied by connecting current generators

to the boundary nodes. A signal of unit amplitude with

constant phase is applied across the waveguide aperture. The

classical waveguide structure adopted here is chosen because

of its analytical volubility hence its appeal as a benchmark

check for accuracy of solution. A standard WR-90 rectangular

waveguide of length one wavelength long at 10 GHz can be

represented by a network of (1461 x 2461): this represents a

mesh discretization of A/20.

The network describing the waveguide problem is divided

into four pieces and solved on a T800 transputer network using

concurrent network folding algorithms. Fig. 5 presents tlhe Ev
field (proportional to Vy) distribution in the z-direction for

two different mesh sizes obtained on application of the folding

1

_ S!m.hted 390Node ,., ”’

n S+mulabd96 Node ,’

LENGTH (MM)

Field in an ideal open ended rectangular waveguide, along the
—
Z direction.

algorithms. Comparison of the results obtained by simulation

with the analytical results shows that a mesh size of 20 units

per wavelength is sufficient to describe the fields in a straight

waveguide section.

Often fine detail of field behavior within the transmission

line or structure under investigation is not required. In these

cases the scattering parameter matrix can be obtained directly

from port voltage and current relationships.

IX. APPLICATION OF NETWORK

ANALOGS TO PLANAR CIRCUITS

Since the concurrent diakoptics method network as de-

scribed here allows the modelling of a general two-dimensional

medium, it can be applied to problems such as microstrip using

equivalent waveguide modelling and planar circuit techniques,

[31]-[33].

The frequency dependent properties of the microstrip line

can now be described by using the appropriate values of L

and C on the lumped equivalent network:

L =poAl

C = Coq.).fi(f)Al (8)

The frequency dependent effective permittivity CT,,E(~) can

be computed from a standard microstrip dispersion model. The

frequency dependent effective width, W,ff (j) of the parallel

plate waveguide is calculated after Kompa [33] for a 50 ohm

microstrip line on a 0.79 mm Duroid substrate with relative

permittivity of 2.2 at 13.0 GHz, the cut-off frequency for the

model is 41.4 GHz.

The width of the line is divided into 10 mesh units, this

corresponds to a mesh size smaller than Ag/40 at 13.0 GHz.

The length of the microstrip modelled is about 1.47 ~g long,

and is divided into 63 mesh units. Current sources of unit

amplitude and constant phase are connected at the input
boundary nodes and the RING algorithm is used for solution.

On the network an impedance of 270 ohms connected at each

of the input and output boundary nodes giving a VSWR of

1.07. This impedance corresponds to the wave impedance

ZW of the parallel plate waveguide filled with dielectric. The

microstrip line characteristic impedance, 20, can be computed
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.........- , 1.,,,,,,,, .... ...},, ,::,”
‘; h

Miematklp ‘T

Pianarwavegrdde modd

(a)

SN1 SN2

llRF

TH4H5Hr
(b)

Fig. 6. Square mlcrostrip patch coupler. f = 13.0 GHz; E, = ‘2.2.
h = 0.79 mm, a = 8.66 mm

Fk. 7. Network folduw RING algorithm used to mau uatch coupler onto

from the wave impedance as

Zo = ()~z.
a

where a is width and b is height of parallel plate waveguide.

This results in a characteristic impedance of 49.5 ohms. When

the output port is terminated in a short circuit, the distance

between the two successive minima of the VSWR pattern was

one half the guide wavelength. A VSWR of 2.0 and 4.0 for

the output terminations corresponding to Zo/2 and Z./4, these

values are commensurate with standard theory. The cdmputed

magnitude of S11 and S21 when compared with the results

obtained by classical theory show agreement.

X. SIMULATION OF PATCH COUPLER

a transputer array. (a) Schematic re~resentatlon of netwo;k of patch coupler

divided into small subnetworks. (b) Sttbnetwork folding for RING algorithm.

(9)

The dynamic planar waveguide concept explained previ-

ously is now applied to model the microstrip patch coupler

shown in Fig. 6. This work approximates the microstrip patch

coupler [34] by an equivalent planar waveguide model which

is then represented by the lumped equivalent network and

solved by the diakoptic method.

The square microstrip patch coupler shown in Fig. 6 is

sub-divided into five parts, parts 1 to 4 represent the feed

arms and the fifth part represents the square resonator. Once

each individual microstrip section is replaced by the equivalent

planar waveguide, their interconnection forms the equivalent

waveguide configuration for the square patch microstrip cou-

pler. The physical dimension. a, of the square patch was 8.66
mm at 13 GHz, arrived at empirically by TLM simulation

[34]. In the computation, a, was replaced by the frequency

dependent effective width WP,eff(j) of the patch. calculated

to be 11.10 mm. The microstrip feed width of 2.44 mm when

replaced by planar waveguide gives a width of 3.889 mm.

The values of L and G’ of the network model are computed

from eqtlation (8). Loss and radiation effects can be introduced

by calculating approximate resistive components form [28]. It

should be noted that the two different line widths associated

with this structure viz. the feed arm and the patch have

different G.,,R, hence two different sets of values of L, C.
A uniform mesh size of 0.74 mm is selected to represent the

TABLE V
COMPUTED S-PARAMETERS OF A SQUARE

MICROSTRIP PATCH COUPLERAT 13.0 GHz

, ,
S-paraareters

[Slll

1s211

\sq,l

Is’f~ I

1s31 LS2,

%,eff
(Wnfonn)

‘r,eff
(Structure dependent)

0.1273 0.1561
(-17.90 dB) (-16.13 dB)

0.7040 I 0.6985
(-3.05 dB) (-3. 12 dB)

0.6781 I 0.6746
(-3.37 dB) (-3.42 dB)

0.2228 0.2277
(-13.04 dB) (-12.85 dB)

-91.54° I -92.54°

coupler geometry, this corresponds to &/22 at 13 GHz. The

network is divided into eight subnetworks shown in Fig. 7.

The subnetworks that are folded locally to form four major

subnetworks which is the requirement for the RING algorithm

as shown in Fig. 7(b). The S-parameters of the patch coupler

computed from the network nodal voltages across the feedline

apertures are given in Table V, these results justify hybrid

quadrature behavior.

XI. CONCLUSION

A new algorithm is developed which is suitable for inter-

connecting on a nearest neighbor basis the massively repetitive

equivalent circuits that result when network analogs are used

to represent electromagnetic field quantities, The algorithm

is efficient for operation on a parallel computer. The effect

of parallel process interconnection on computational efficiency

has been demonstrated. Further it has been shown that two

dimensional equivalent circuit networks allow modelling of

planar microwave structures. This suggests that when the

network diakoptics method is combined with planar waveguide

concepts it can be used as an alternative approach to the
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Fig. 8. Ne~estneighbor network reduction forafonr subnetwork problem:
excitation vector la.

segmentation method [28]. This is particularly so if field detail

within elements is required. The method has been verified on

sample transmission line problems and has been used to model

the behavior of a recently introduced microwave component

the Patch Hybrid Coupler.

APPENDIX

NETWORK REDUCTION METHOD FOR FOUR SUBNETWCJRKS

The basic global diakoptics (4) can not easily be extended

to update the subnetwork solutions locally for more than

two subnetworks. Principally this is due to partitioning of

the matrix (4) formed by the removed branches 24+, on a

subnework basis becomes difficult. This Appendix describes

the mathematical formulation to fold the four subnetwork

situation illustrated in Fig. 8.

In Fig. 8 each subnetwork corrtmunicates with its predeces-

sor and its successor. Nodal voltages V, on the netwolrk are

computed for the excitation 1 applied to the subnetwork a.

The network of Fig. 8 can be treated as having two major

subnetworks X and Y for which the nodal voltages can be

written using (4):

where

Z,s is formed by s removed branches and the connection

matrices CSA- and CSY are local to the torn subnetworks X

and Y.

Since the subnetwork X consists of two smaller subnet-

works a and b the equivalent nodal admittance matrix ~x.y,

can be written as

(A1.4)

where

and

(A1,6)

Zll is the Z matrix formed by 1 removed brances, and C.l and

CIJ are connection matrices local to the subnetworks a and b.

Similarly the nodal admittance matrix YY-Y for the subnet-

work Y can be written as

r-)-j?

(A1.7)

where

and

27. = Z,, + C:C?C.lC.. + C:dYd;l Cdr , (A1.9)

Zr. is the local Z matrix formed by r removed brances,

and C.r and Cdr are the connection matrices local to the

subnetworks c and d.

Substituting (Al .3) to (Al .9) in (Al. 1) and (Al .2) the

following equations can be obtained to compute the nodal

voltages

The
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equations given in (Al. 10) are used to develop a concur-

algorithm for implementation on a transputer ring.
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